Final Exam, MTH 205, Summer 2009

Ayman Badawi

QUESTION 1. (5 points) Given $y=\cos (3 t)$ is a solution to the D.E $y^{(2)}+a y^{\prime}+6 y=0$ where a, b are constants. Find the values of a and b.

QUESTION 2. (10 points) Given $y=4 e^{-2 x}$ is a solution to the D.E. $y^{(5)}+2 y^{(4)}-y^{(3)}-$ $2 y^{(2)}=0$. What is the general solution of the D.E?

QUESTION 3. (5 points) let

$$
f(x)= \begin{cases}-x & 0 \leq x<4 \\ 3 & x \geq 4\end{cases}
$$

Write $f(x)$ in terms of unit step functions.

QUESTION 4. (10 points) Solve $y^{\prime}=\frac{x^{3}-2 x y^{3}}{3 y^{2}}$

QUESTION 5. (10 points) solve $y^{\prime}=2 x e^{x^{2}-y}$

QUESTION 6. (15 points) Find the general solution to $y^{(2)}+\frac{1}{x} y^{\prime}+\frac{1}{x^{2}} y=\frac{\sin (\ln (x))}{x^{2}}$

QUESTION 7. (10 points) Solve : $y(x)=\int_{0}^{x}(x-r) e^{x-r} \cos (r) d r+\int_{0}^{x} \sin (r) y(x-r) d r$

QUESTION 8. (10 points) Find $x(t)$ and $y(t)$, given $x(0)=x^{\prime}(0)=0$ and $y(0)=1$
$x^{(2)}(t)+y(t)=3$
$x^{\prime}(t)+y^{\prime}(t)=2 t$

QUESTION 9. (15 points) Given $f(x)$ is PERIODIC and is defined on $[0, \infty)$. The first period of $f(x)$ is determined by

$$
\begin{cases}1 & 0 \leq x<1 \\ 0 & 1 \leq x<2\end{cases}
$$

Find $\mathrm{y}(\mathrm{x})$ so that $\int_{0}^{x} f(r) d r+\int_{0}^{x} f(x-r) y(r) d r=x e^{x}\left[\right.$ note $\left(1-e^{-2 s}\right)=\left(1+e^{-s}\right)\left(1-e^{-s}\right)$]

QUESTION 10. (10 points) Let $T(t)$ be the temperature of a thermometer at any time t . If a thermometer reading 34^{c} is placed in an oven preheated to a constant temperature T_{0}. Given that the rate of change of the thermometer temperature is exactly $0.2\left(T(t)-T_{0}\right)$. Through a glass of a window in the oven, an observer records that the thermometer reads 44^{c} after one minute. How hot is the oven? (i.e. Find T_{0}).

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

